
ar
X

iv
:p

hy
si

cs
/0

30
61

42
 v

1 
  1

8 
Ju

n 
20

03

Nonconservative Lagrangian Mechanics: A
generalized function approach

David W. Dreisigmeyer∗and Peter M. Young†

Department of Electrical and Computer Engineering
Colorado State University, Fort Collins, CO 80523

June 19, 2003

Abstract

We reexamine the problem of having nonconservative equations of mo-
tion arise from the use of a variational principle. In particular, a formalism
is developed that allows the inclusion of fractional derivatives. This is done
within the Lagrangian framework by treating the action as a Volterra series.
It is then possible to derive two equations of motion, one of these is an
advanced equation and the other is retarded.

1 Introduction

The problem of having a dissipation terṁq arise in the equations of motion for
a system has a long history. Bauer [2] showed that “the equations of motion of
a dissipative linear dynamical system with constant coefficients are not given by
a variational principle”. There are loopholes in Bauer’s proof, however. One of
these is to allow for additional equations of motion to arise. This method was
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employed by Bateman [1]. He used the Lagrangian

L = mẋẏ +
C

2
(xẏ − ẋy) (1)

which gives the equations of motion

mẍ + Cẋ = 0 mÿ − Cẏ = 0 (2)

Bateman’s method is not very general, so we look for other methods to model
nonconservative systems.

Caldeira and Leggett [6] suggest recognizing that a dissipative system is cou-
pled to an environment. The environment is modelled as a collection of harmonic
oscillators which results in the Lagrangian

L =
m

2
q̇2 − V (q) +

∞∑

n=1

{
mn

2
q̇2
n −

mnω2
n

2
(qn − q)2

}
(3)

whereq is the system’s coordinate and theqn’s are the environment’s coordinates.
While the system by itself is nonconservative, the system plus environment is con-
servative. This procedure does allow the introduction of very general dissipation
terms into the system’s equation of motion. However, the microscopic modelling
of the environment makes (3) much more complex than, say, (1).

In order to overcome the difficulties of the above two procedures, Riewe
examined using fractional derivatives in the Lagrangians [12, 13]. This method
takes advantage of another loophole in Bauer’s proof. Namely, Bauer assumed
that all derivatives were integer ordered. Riewe’s method has the advantage of
not introducing extra coordinates as in (1) and (3). However, it ultimately results
in noncausal equations of motion. A rather ad hoc procedure of replacing anti-
causal with causal operators needs to be used at the end in order to arrive at causal
equations of motion. We will present a method that can be usedwithin Riewe’s
formalism that avoids this situation.

We propose here a new method of using a variational principleto derive
nonconservative equations of motion. Our method is closelyrelated to Riewe’s in
that we use fractional operators. However, we treat these operators as kernels in a
Volterra series. We show that Riewe’s formalism can be derived by using certain
types of symmetric kernels in the series expansion. A simplemodification of the
kernels will result in two equations of motion for a system. One of these equations
is advanced while the other is retarded, similar to (2).
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Our paper is organized as follows. In Section 2 we review fractional integration
and differentiation. Riewe’s formalism is briefly examinedin Section 3. We then
give a brief overview of Volterra series in Section 4 before examining our fractional
Lagrangian mechanics in Section 5. Section 6 examines the nonconservative
harmonic oscillator in a different way than the traditionalvariational methods. A
discussion of some related concepts and future research follows in Section 7.

2 Fractional Integration and Differentiation

Fractional integrals and derivatives are generalizationsof their usual integer or-
dered operations. To start developing the theory, let us first write down Cauchy’s
integral formula

f (−n)(t) =
1

Γ(n)

∫ t

a
f(τ)(t− τ)n−1dτ (4)

wheren > 0 is an integer,Γ(n) is the gamma function, anda < t. Equation (4) is
a convolution off(t) and the function

Φ+
n (t) :=

{
1

Γ(n)
tn−1 t > 0

0 t ≤ 0
(5)

if we setf(t) ≡ 0 for t < a. So we can rewrite (4) as

aI
n
t [f ] = f(t) ∗ Φ+

n (t) (6)

where∗ is the convolution operation defined by

g(t) ∗ h(t) :=
∫

∞

−∞

g(τ)h(t− τ)dτ (7)

Equation (6) will be our stepping stone to generalizing the integer ordered opera-
tions to fractional order.

The above procedure works so well for the integersn > 0, we want to consider
extending it to any realα > 0. This is obviously possible, so we let

aI
α
t [f ] = f(t) ∗ Φ+

α (t) (8)
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be the left fractional integral [LFI] off(t) of orderα > 0. Everything works fine
until we consider the caseα = 0. We reasonably expect that

aI
0
t [f ] = f(t) (9)

but, it is not immediately obvious that the integral in (6) isnot divergent. Also, for
−1 < α < 0, the integral is obviously divergent. It is apparent that treatingf(t)
andΦ+

α (t) as regular functions will not be sufficiently general for ourpurposes.
Instead we will consider them to be distributions, or generalized functions. [We
note that there are other ways to generalize integer orderedderivatives to frac-
tional order [10]. We will work solely with the generalized function approach to
interpolate between the integer ordered integrals and derivatives.]

The first order of business is to define the convolution operation for distribu-
tions. Letk(t) = g(t) ∗ h(t) andϕ(t) be a test function. Then [7]

〈k, ϕ〉 :=
∫

k(t)ϕ(t)dt

=
∫ {∫

g(ξ)h(t− ξ)dξ
}

ϕ(t)dt (10)

=
∫ ∫

g(ξ)h(η)ϕ(ξ + η)dξdη

Equation (10) is meaningful as long as eitherg(t) or h(t) has bounded support or,
g(t) andh(t) are bounded on the same side [e.g.,g(t) ≡ 0 for t < t1 andh(t) ≡ 0
for t < t2]. We will always assume that one of these situations is the case. From
(10), it can be seen that the generalization of (7) is

〈g ∗ h, ϕ〉 = 〈g(t), 〈h(τ), ϕ(t + τ)〉〉 (11)

The convolution operation has the properties

g ∗ h = h ∗ g (12)

f ∗ (g ∗ h) = (f ∗ g) ∗ h (13)

D(g ∗ h) = (Dg) ∗ h = g ∗ (Dh) (14)

whereD(·) is the generalized derivative. Remember that the relationship between
the generalized and classical derivatives, beginning att = a, is given by [10]

Dnf = f (n) +
n−1∑

k=0

[
Dn−k−1δ(t− a)

]
f (k)(a) (15)
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wheref (n) is the classical derivative.

ConsideringΦ+
α (t) as a generalized function allows us to extend (8) to anyα,

where the convolution operation is defined as in (11). Forα < 0, this will define
the left fractional derivative [LFD] as

aD
−α
t [f ] := aI

α
t [f ]

= f(t) ∗ Φ+
α (t) (16)

In the sequel, we will find it easier to assumeα > 0 and use the notation

aD
α
t [f ] = f(t) ∗ Φ+

−α(t) aD
−α
t [f ] = aI

α
t [f ] (17)

Also, for reasons that will become apparent shortly, we willoften setf(t) ≡ 0 for
t < a andt > b, wherea < b. We do not want any resulting discontinuities in
f(t) at t = b to affect the LFDs. Sot must be restricted to the intervala ≤ t < b
in the LFDs. It would perhaps be better to write (17) as

a−Dα
t− [f ] =

1

Γ(−α)

∫ t−

a−

f(τ)(t− τ)−(α+1)dτ (18)

To avoid cluttering our notation, we will continue to use thenotation in (17) with
the understanding that it formally means (18).

The distributionsΦ+
α (t) have been well studied [7, 10]. Their two most

important properties are

Φ+
n (t) = D−nδ(t+) (19)

for any integern, and, for anyβ andγ,

Φ+
β (t− a) ∗ Φ+

γ (t) = Φ+
β+γ(t− a) (20)

Equation (20) implies

aD
β
t [aD

γ
t [f ]] = aD

β+γ
t [f ] (21)

aD
β
t

[
aD

−β
t [f ]

]
= f (22)

Now let 0 ≤ n − 1 ≤ α < n. Then, using (12) – (14) and (19) and (20), we
have

aD
α
t [f ] = f(t) ∗ Φ+

−α(t)

= f(t) ∗
(
DnΦ+

n−α(t)
)

= (Dnf(t)) ∗ Φ+
n−α(t) (23)

= Dn
(
f(t) ∗ Φ+

n−α(t)
)

(24)

5



Equations (23) and (24) are the distributional forms of the Caputo and Riemann-
Liouville fractional derivative, respectively [10]. In the standard definitions of
these derivatives,Dn is replaced with(d/dt)n.

In addition to the left fractional operations, we can also define right fractional
operations. If we setf(t) ≡ 0 for t > b and define

Φ−

α (t) :=

{
1

Γ(α)
(−t)α−1 t < 0

0 t ≥ 0
(25)

the right fractional operations are defined by

tD
α
b [f ] := f(t) ∗ Φ−

−α(t) (26)

Most of the above observations for the left fractional operations also hold for the
right ones. However, (19) needs to be replaced with

Φ−

n (t) = (−1)nD−nδ(t−) (27)

for any integern. Whenf(t) ≡ 0 for t < a and t > b, we do not allow any
resulting discontinuities inf(t) at t = a to affect the RFDs. Similar to the case
for the LFDs, we will take (26) as meaning

t+Dα
b+ [f ] =

1

Γ(−α)

∫ b+

t+
f(τ)(τ − t)−(α+1) (28)

though we will continue to use the notation in (26).

Note that for the left operations, the “left” integration limit a determines the
allowable functions in the operationaD

α
t [f ]. Namely,f(t) must vanish fort < a.

Also, aD
α
t [f ] is a function ofα andt and, a functional off(t). Similar comments

hold for the right operations. Here, the “right” integration limit b meansf(t) ≡ 0
for t > b. Now let f(t) be compactly supported on the interval[a, b]. Then

aD
α
t [f ] = 0 whenevert < a. However,aD

α
t [f ] does not generally vanish for

t > a. Thus, the left operations are causal or retarded. Conversely, tD
α
b [f ] = 0

whenevert > b but, generally,tD
α
b [f ] 6= 0 for t < b. Hence, the right operations

are anti-causal or advanced.

Our fractional derivatives satisfy an integration by partsformula. First, assume
thatf(t) ≡ 0 for t < a andg(t) ≡ 0 for t > b. Then, for anyβ,

〈g(τ)Φ+
β (τ − t)f(t), ϕ(t, τ)〉 = 〈g(τ)Φ−

β (t− τ)f(t), ϕ(t, τ)〉 (29)
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Hence,

〈g(Φ+
β ∗ f), ϕ〉 = 〈(g ∗ Φ−

β )f, ϕ〉 (30)

or
∫

aD
β
t [f ] g(t)dt =

∫
tD

β
b [g] f(t)dt (31)

We note that Riewe’s derivation of an integration by parts formula [13, Equa-
tion (16)] is flawed on two points. First, the boundary conditions are generally
fractional, not integer, ordered. Also, Riewe incorrectlyexchanges the classical
Caputo derivative [(23) withDn replaced with(d/dt)n] for the Riemann-Liouville
derivative in (24). Fortunately, when vanishing boundary conditions are assumed,
these defects are inconsequential. Also notice that (31) implies that any integration
by parts inherently introduces time reversal.

When we examine Riewe’s fractional mechanics in Section 3, (31) will lead to
equations of the form

Φ−

β ∗
(
Φ+

β ∗ f
)

= tD
α
b [aD

α
t [f ]]

?
=

(
Φ−

β ∗ Φ+
β

)
∗ f (32)

The difficulty with (32) is that neither areΦ+
β (t) or Φ−

β (t) compactly supported,
generally, nor are they bounded on the same side. So we need tomake sense of
the convolution in (32). To give meaning to the convolution,let us note that the
Fourier transform ofΦ+

β (t) is given by [7]

Φ+
β (t)

F
←→

exp[sgn(ω)iβπ/2]

|ω|β
(33)

and forΦ−

β (t)

Φ−

β (t)
F
←→

exp[−sgn(ω)iβπ/2]

|ω|β
(34)

[Note that (33) and (34) imply that, up to a sign, the fractional derivatives go to
the integer ordered derivatives whenβ is an integer.] Then,

Φ−

β (t) ∗ Φ+
β (t)

F
←→ |ω|−2β (35)
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Now,

|t|2β−1

2 cos(βπ)Γ(2β)
F
←→ |ω|−2β (36)

We will define

Ψ2β(t) := Φ−

β (t) ∗ Φ+
β (t)

=
|t|2β−1

2 cos(βπ)Γ(2β)
(37)

and let

Φ−

β (t) ∗ Φ+
β (t) ∗ f(t) ≡ Ψ2β(t) ∗ f(t) (38)

for anyβ wheref(t) ≡ 0 for t < a andt > b. We call (38) a Feller fractional
derivative [FFD] [11] and write this as

a
t
F2α

b [f ] := Ψ−2α(t) ∗ f(t) (39)

= tD
α
b [aD

α
t [f ]]

Note that, forn an integer,

a
t
F2n

b [f ] = (−1)nf (2n)(t) (40)

for 0 < t < T , but

a
t
F2n+1

b [f ] 6= ±f (2n+1)(t) (41)

Some care is needed when using the FFDs. Formally we have setf(t) ≡ 0 for
t > a andt < b. However, the LFD only acts on the resulting discontinuities that
may be present inf(t) at t = a, not att = b. Conversely, the RFD acts on the
discontinuities att = b, not t = a. It is perhaps better to write (37) as

Ψ2β(t) =
1

2 cos(βπ)

[
Φ+

2β(t) + Φ−

2β(t)
]

(42)

Then (39) can be written as

a
t
F2α

b [f ] =
1

2 cos(βπ)

{
aD

2α
t [f ] + tD

2α
b [f ]

}
(43)
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We will take (39) as implying (43).

In general, the fractional derivatives are nonlocal in time. That is, they have
a “memory”. For integer ordered LFDs and RFDs, this memory disappears [i.e.,
they are “amnesiac”] and they act locally in time. Even integer ordered FFDs are
also amnesiac since the kernelsΨ−2n(t) equal, up to a sign,Φ+

−2n(t) andΦ−

−2n(t)
in this case. All of the fractional derivatives have a fadingmemory, however [4].
That is, they are affected more by the recent past and/or future than the distant past
and/or future.

3 Riewe’s Fractional Lagrangian Mechanics

Here we examine Riewe’s fractional mechanics [12, 13], restricting our attention
to Lagrangian mechanics with Lagrangians of the form

L(q, aq
α
t , aq

1
t ) =

m

2

(
aq

1
t

)2
+

C

2
(aq

α
t )2 − V (q) (44)

whereq is our [generalized] coordinate,C is a constant,0 < α < 1 and,

aq
α
t := aD

α
t [q] (45)

We define the action associated with (44) by

S[q] :=
∫ b

a
Ldt (46)

Let us consider perturbationsη(t) of q(t) whereη(t) vanishes fort ≤ a andt ≥ b
but is otherwise arbitrary. Then,

δS[q] = δ
∫ b

a
Ldt

=
∫ b

a

[
L(q + η, aq

α
t + aη

α
t , aq

1
t + aη

1
t )− L(q, aq

α
t , aq

1
t )

]
dt (47)

Expanding the perturbed Lagrangian in (47)

L(q + η, aq
α
t + aη

α
t , aq

1
t + aη

1
t ) = L(q, aq

α
t , aq

1
t ) +

∂L

∂q
η +

∂L

∂aq
α
t

aη
α
t +

∂L

∂aq
1
t

aη
1
t (48)
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and using (48) in (47), we have

δS[q] =
∫ b

a

{
∂L

∂q
η +

∂L

∂aq
α
t

aη
α
t +

∂L

∂aq
1
t

aη
1
t

}
dt

=
∫ b

a
η

{
∂L

∂q
+ tD

α
b

[
∂L

∂aq
α
t

]
+ tD

1
b

[
∂L

∂aq
1
t

]}
dt (49)

where we used (31) in going to the second equality.

Hamilton’s principle states that the actual path that a system follows will be that
which causes (49) to vanish. Sinceη is infinitesimal but arbitrary, the bracketed
term in (49) must vanish forδS[q] to vanish. Hence, our Euler-Lagrange equation
is

tD
1
b

[
∂L

∂aq
1
t

]
+ tD

α
b

[
∂L

∂aq
α
t

]
= −

∂L

∂q
(50)

For our Lagrangian in (44), we have the following Euler-Lagrange equation of
motion

tD
1
b

[
maq

1
t

]
+ tD

α
b [Caq

α
t ] = ma

t
F2

b [q] + Ca
t
F2α

b [q] (51)

=
∂V

∂q

[From (43), we see that (51) is a two-endpoint equation [3].]If, for example,
V (q) = 1/2mω2q2, (51) can be written as

[
mΨ−2 + CΨ−2α −mω2Ψ0

]
∗ q = 0 (52)

Notice the appearance of the FFD in (51). It arises because ofthe integration
by parts formula (31). In order to have a strictly causal equation of motion, Riewe
suggests considering an infinitesimal time interval[0, 2ǫ] and then replacing all
RFDs with LFDs. This seems unsatisfactory because fractional operators have
memory due to their nonlocal [in time] nature. By restricting the time interval
to an infinitesimal duration, Riewe is effectively erasing this memory. Also, it is
questionable if this will provide an accurate approximation. For example, let our
time period be[0, 2ǫ] and

f(t) = δ(t− ǫ) (53)

= Φ+
0 (t− ǫ)

10



Then,

aD
2α
t [f ] = Φ+

−2α(t− ǫ) (54)

but,

a
t
F2α

b [f ] = Ψ−2α(t− ǫ) (55)

Now let α = 1/2. Obviously (54) and (55) do not agree fort < ǫ. For t > ǫ we
have thatΨ−1(t− ǫ) 6= 0 while Φ+

−1(t− ǫ) does vanish.

If we blindly follow the above procedure for (51) we have the resulting equation

mq̈ + Cq̇ =
∂V

∂q
(56)

which is missing a minus sign in front of the derivative of thepotentialV . We
could of course recognize thata

t
F2

b [q] = −q̈ for a < t < b and change the sign of
C in (44). Then we would have the correct causal equation of motion with friction

mq̈ + Cq̇ = −
∂V

∂q
(57)

However, this requires that we treat integer ordered derivatives differently, which
is not entirely satisfactory.

Instead of using the Lagrangian in (44), let us use

L = −
m

2

(
aD

1
t [q]

) (
tD

1
b [q]

)
−

C

2
(aD

α
t [q]) (tD

α
b [q])− V (q) (58)

If we perturbq by η in (58), we have, to first order inη,

δL = −
m

2 aD
1
t [q] tη

1
b −

C

2 aD
α
t [q] tη

α
b −

1

2

∂V

∂q
η

−
m

2 tD
1
b [q] aη

1
t −

C

2 tD
α
b [q] aη

α
t −

1

2

∂V

∂q
η (59)

Then, using (31),
∫ b

a
δL dt =

∫ b

a

η

2

{
−maD

2
t [q]− CaD

2α
t [q]−

∂V

∂q

}
dt

︸ ︷︷ ︸
retarded

+

∫ b

a

η

2

{
−mtD

2
b [q]− CtD

2α
b [q]−

∂V

∂q

}
dt

︸ ︷︷ ︸
advanced

(60)

11



Now,

δS[q] =
∫ b

a
δLdt (61)

To makeδS[q] vanish, we will require that the bracketed terms in (60) vanish
separately. This gives us two equations of motion

maD
2
t [q] + CaD

2α
t [q] = −∂V

∂q
(retarded) (62)

mtD
2
b [q] + CtD

2α
b [q] = −∂V

∂q
(advanced) (63)

For the special caseα = 1/2, (62) and (63) become

mq̈ + Cq̇ = −∂V
∂q

(retarded) (64)

mq̈ − Cq̇ = −∂V
∂q

(advanced) (65)

respectively, fora < t < b.

Comparing (64) and (65) with (2), we see that Bateman’s method is included
in Riewe’s formalism provided we use Lagrangians as in (58) and, require the
advanced and retarded parts of the perturbed action to vanish separately. [These
types of Lagrangians were not considered explicitly by Riewe in [12, 13].] Al-
lowing both a retarded and an advanced equation of motion to arise from the
variation of the action seems more natural than, for example, (52). It avoids the
final procedure of replacingtD

α
b [q] with aD

α
t [q]. Also, the Lagrangian in (58)

is preferable to that in (44) because it does not apriori assume that the LFDs are
to be favored over the RFDs. Now we turn our attention to an alternate way of
constructing nonconservative Lagrangians.

4 Volterra Series

In order to develop our new formalism of nonconservative Lagrangians, we will
need some background on Volterra series [5, 15]. The Volterra series is a general-
ization to functionals of the power series of a function. Forsome functionalV[q],
we define the symmetric kernels

K(s)
n (τ1, . . . , τn) :=

δnV[q]

δq(τ1) · · · δq(τn)
(66)

12



The K(s)
n (·)’s are symmetric under an interchange of theτi’s. So, for example,

K
(s)
2 (τ1, τ2) = K

(s)
2 (τ2, τ1). Introducing the notation

K(s)
n ⋆ qn :=

∫

τ1

· · ·
∫

τn

K(s)
n (τ1, . . . , τn)q(τn) · · · q(τ1)dτn · · · dτ1 (67)

we can expand the functionalV[q] in the Volterra series

V[q] =
∞∑

n=1

1

n!
K(s)

n ⋆ qn (68)

[For our purposes we can assume thatK
(s)
0 = V[0] ≡ 0.] It is easy to show that

δK(s)
n ⋆ qn

δq(t)
= nK(s)

n ⋆ qn−1

:= n
∫

τ2

· · ·
∫

τn

K(s)
n (t, τ2, . . . , τn) (69)

q(τn) · · · q(τ2)dτn · · ·dτ2

The symmetric kernels are the natural choice to use in a Volterra series. How-
ever, we may be given asymmetric kernels and would like to symmetrize them or
vice versa. As motivation, consider the function

v(q) =
1

2

∑

i

Kiiq
2
i +

∑

i<j

Kijqiqj (70)

whereq = [q1, . . . , qn]. We can symmetrizev(q) into the form

v(q) =
1

2

∑

i,j

Kijqiqj (71)

whereKij = Kji is a symmetric matrix. We will be particularly interested in
triangular kernels given by

K(t)
n (τ1, . . . , τn) = 0 unlessτ1 ≥ τ2 ≥ · · · ≥ τn (72)

Now, letσ be a permutation of1, . . . , n. The symmetrization of (72) is defined as

symK(t)
n (τ1, . . . , τn) :=

1

n!

∑

σ

K(t)
n (τσ1

, . . . , τσn
) (73)

=
1

n!
K(s)

n (τ1, . . . , τn)

13



5 Volterra Series Fractional Lagrangian Mechanics

Let us now reconsider the nonconservative harmonic oscillator equation of motion
in (52). Using the notation in (69), (52) becomes

K
(s)
2 ⋆ q1 = 0 (74)

where

K
(s)
2 (t, τ) := mΨ−2(t− τ) + CΨ−2α(t− τ)−mω2Ψ0(t− τ) (75)

Let our action be given by

V2[q] =
1

2
K

(s)
2 ⋆ q2 (76)

Then,

δV2[q]

δq(t)
= K

(s)
2 ⋆ q1 (77)

Requiring (77) to vanish gives us (74).

Suppose now that we have a driven harmonic oscillator

mq̈ + mω2q = f(t) (78)

We can form a new functional

V2′ [q] = K
(s)

1
′ ⋆ q1 +

1

2
K

(s)

2
′ ⋆ q2 (79)

where

K
(s)

2
′ (t, τ) := mΨ−2(t− τ)−mω2Ψ0(t− τ) (80)

It immediately follows that, ignoring boundary conditions,

δV2′ [q]

δq(t)
= K

(s)

1′
(t)−mq̈ −mω2q (81)

Requiring (81) to vanish and comparing with (78), we see thatK
(s)

1′
(t) = f(t).

We can also handle higher order potentials. Let, for example,

V3′ [q] = K
(s)

1′
⋆ q1 +

1

2!
K

(s)

2′
⋆ q2 +

1

3!
K

(s)

3′
⋆ q3 (82)
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where, for some constantC,

K
(s)

3′
(τ1, τ2, τ3) := CΨ0(τ1 − τ2)Ψ0(τ2 − τ3) (83)

Then, again ignoring boundary terms,

δV3′ [q]

δq(t)
= f(t)−mq̈ −mω2q +

C

2
q2 (84)

We recognize (82) as the beginning of the Volterra series forsome functionalV[q].
To all orders ofq,

V[q] =
∞∑

n=1

1

n!
K(s)

n ⋆ qn (85)

[We can ignore then = 0 term in (85) since this only adds an irrelevant constant
to V[q].] For n ≥ 2, theK(s)

n (·)’s are interpreted as the environment’s reaction to
q, which affectsq’s evolution. Any forcing function is included inK(s)

1 (t).

All of the actions considered above share two key properties:

1. The kernelsK(s)
n (·) are all localized along the lineτ1 = τ2.

2. The kernels satisfy the relationK(s)
n (·) = K(t)

n (·).

These properties make the above actions particularly easy to analyze. However, it
is impossible to introduce even the simple termCq̇ into the equations of motion
using theΨα’s [see (41)]. Using triangular, instead of symmetric, kernels results
in a more flexible formalism. This amounts to using theΦ±

α ’s in the Volterra series
instead of theΨα’s. We will then be able to construct symmetric kernels that only
use theΦ±

α ’s, not theΨα’s. This requires us to be careful about the boundary terms
in our equations. It is this situation that we now turn our attention to.

We return again to the nonconservative harmonic oscillator. For some constant
C, define the triangular kernels

K+
2 (t, τ) := −

[
mΦ+

−2(t− τ) + CΦ+
−2α(t− τ) + mω2Φ+

0 (t− τ)
]

(86)

K−

2 (τ, t) := −
[
mΦ−

−2(τ − t) + CΦ−

−2α(τ − t) + mω2Φ−

0 (τ − t)
]

(87)

where

K+
2 (t, τ) = K−

2 (τ, t) (88)
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Now consider the functional

V̂[q] :=
1

2

∫ b+

a−

∫ τ−

1

a−

K+
2 (τ1, τ2)q(τ2)q(τ1)dτ2dτ1 (89)

The functional derivative of (89) is given by [15]

δV̂[q]

δq(t)
= lim

h→0

1

2h

{∫ b+

a−

∫ τ−

1

a−

K+
2 (τ1, τ2)[q(τ2) + hδ(τ2 − t)]×

[q(τ1) + hδ(τ1 − t)]dτ2dτ1 −
∫ b+

a−

∫ τ−

1

a−

K+
2 (τ1, τ2)q(τ2)q(τ1)dτ2dτ1

}

=
1

2

∫ b+

a−

∫ τ−

1

a−

K+
2 (τ1, τ2)δ(τ2 − t)q(τ1)dτ2dτ1 +

1

2

∫ b+

a−

∫ τ−

1

a−

K+
2 (τ1, τ2)q(τ2)δ(τ1 − t)dτ2dτ1

=
1

2

∫ b+

t+
K−

2 (t, τ1)q(τ1)dτ1

︸ ︷︷ ︸
advanced

+
1

2

∫ t−

a−

K+
2 (t, τ2)q(τ2)dτ2

︸ ︷︷ ︸
retarded

(90)

wherea ≤ t ≤ b. Instead of requiring the sum in (90) to vanish, we will require
the advanced and retarded parts of the action’s variation tovanish separately. This
gives us two equations of motion for our system

[
mΦ+

−2(t) + CΦ+
−2α(t) + mω2Φ+

0 (t)
]
∗ q(t) = 0 (retarded) (91)

[
mΦ−

−2(t) + CΦ−

−2α(t) + mω2Φ−

0 (t)
]
∗ q(t) = 0 (advanced) (92)

From (90), we see thatq(τ1) ≡ 0 for τ1 > b andq(τ2) ≡ 0 for τ2 < a in (89).

Note that if our kernels only contain termsΦ±

2n, n an integer, requiring the
advanced and retarded parts to vanish separately is equivalent to requiring the sum
in (90) to vanish, ignoring boundary conditions. This is becauseΦ+

2n = Φ−

2n and
both equal, up to a sign,Ψ2n. So in this case we can freely use the symmetric
kernelsΨ2n in our action. We can also extend the above action to a driven harmonic
oscillator and higher order potentials, as we did earlier. Again, this is due to the
fact thatΨ0 = Φ±

0 and also thatK(s)
1 = K±

1 .

The kernel in (89) is lower triangular in theτ1τ2-plane [i.e.,K+
2 (τ1, τ2) ≡ 0

whenτ1 ≤ τ2]. We could have equally well used the functional

Ṽ[q] :=
1

2

∫ b+

a−

∫ b+

τ+

1

K+
2 (τ2, τ1)q(τ2)q(τ1)dτ2dτ1 (93)
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to arrive at the equations of motion in (91) and (92). Here thekernel is upper
triangular in theτ1τ2-plane [i.e.,K+

2 (τ2, τ1) ≡ 0 whenτ1 ≥ τ2]. A derivation
similar to that in (90) shows that, if we use (93) for our action , thenq(τ1) ≡ 0 for
τ1 < a andq(τ2) ≡ 0 for τ2 > b. It follows that the symmetric action

V[q] :=
1

2

{
V̂[q] + Ṽ[q]

}
(94)

=
1

2

∫ b+

a−

∫ b+

a−

{
1

2

[
K+

2 (τ1, τ2) + K+
2 (τ2, τ1)

]}
q(τ2)q(τ1)dτ2dτ1

could also be used to derive (91) and (92), whereq(τi) ≡ 0, i = 1, 2, for τi < a
andτi > b. The above is easier to see if we letK+

2 (t) := K+
2 (t, 0) andK−

2 (t) :=
K−

2 (t, 0). Then (89) is given by

V̂[q] =
1

2

∫
q(t)

[
K+

2 (t) ∗ q(t)
]
dt (95)

Using the integration by parts formula in (30) gives us (93)

Ṽ[q] =
1

2

∫
q(t)

[
K−

2 (t) ∗ q(t)
]
dt (96)

Adding (95) to (96), and multiplying by1/2, results in (94)

V[q] =
1

2

∫
q(t)

{
1

2

[
K+

2 (t) + K−

2 (t)
]
∗ q(t)

}
dt (97)

Let us now collect some remaining observations. The usual action for the
harmonic oscillator is given by

S[q] =
1

2

∫ [
mq̇2 −mω2q2

]
dt

= −
1

2

∫
q

[
mq̈ + mω2q

]
dt +

1

2
qq̇

∣∣∣∣
b

a

(98)

where we used an integration by parts in the second equality.The Volterra series
action in (95), withC = 0 in (86), gives

V̂[q] = −
1

2

∫
q

[
mΦ+

−2 + mω2Φ+
0

]
∗ q dt

= −
1

2

∫
q

[
mq̈ + mω2q

]
dt−

1

2

∫
q

[
q̇(a)δ(t− a) + q(a)δ̇(t− a)

]
dt

= −
1

2

∫
q

[
mq̈ + mω2q

]
dt (99)
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where we used (15) for the second equality. Hence,

S[q] = V̂[q] +
1

2
qq̇

∣∣∣∣
b

a

(100)

Thus,V̂[q] differs from S[q] only by the boundary terms ofq(t), which, by our
above analysis, does not affect the resulting equation of motion. This also holds
for (96) and (97). Returning to (95), let us perturbq(t) by η(t). Then,

δV̂ [q] =
1

2

∫
q

[
K+

2 ∗ η
]
dt

︸ ︷︷ ︸
advanced

+
1

2

∫
η

[
K+

2 ∗ q
]
dt

︸ ︷︷ ︸
retarded

(101)

The second term on the right of (101) is what we typically wantin order to derive
our equation of motion forq(t). However, the first term on the right of (101) is
interesting. It shows that the advanced equation of motion for q(t) arises because
of the perturbation of the environment’s reaction due toη(t). That is, using (30),

∫
q

[
K+

2 ∗ η
]
dt =

∫
η

[
K−

2 ∗ q
]
dt (102)

So it seems that the future evolution ofq(t) is affected by its past evolution because
of the memory “stored” in the environment.

6 Perturbing the Environment

So far we have examined everything in a fairly standard way. We assumed that
the environment is described byK+

2 (t) := K+
2 (t, 0) [see (86)] and introduced a

particle into this environment viaq(t). Then we perturbed the particle’s path and
required that the variation in the action vanish under this perturbation. Notice
that the particle did not change the environment’s kernel given byK+

2 (t). So
the particle itself must be so negligible that the environment’s kernel does not
substantially change under its introduction. That is, the particle is a perturbation
to the environment. Let us explore this idea more for the nonconservativeharmonic
oscillator. This will lead to a more holistic view of mechanics which ignores the
distinction between the environment and the system, in the case of the harmonic
oscillator.
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Let us assume that the environment is adequately described by the generalized
function [see (20) for the second equality below]

K+
2 (t) := mΦ+

−2(t) + CΦ+
−2α(t) + mω2Φ+

0 (t)

=
[
mΦ+

−2(t) + CΦ+
−2α(t) + mω2Φ+

0 (t)
]
∗ Φ̂+

0 (t)

= K+
2 (t) ∗ Φ̂+

0 (t) (103)

where the hat on̂Φ+
0 (t) is for bookkeeping purposes only. Now let us perturb the

environmentK+
2 (t) by perturbingΦ̂+

0 (t) by η̂(t), whereη̂(t) is infinitesimal in the,
e.g.,L2-norm compared tôΦ+

0 (t) = δ̂(t). In particular, we will not require that
η̂(t) vanish at any boundaries. Then,

δK+
2 (t) = K+

2 (t) ∗ η̂(t) (104)

Requiring (104) to vanish gives us exactly (91) when we identify η̂(t) ≡ q(t).

In (103), we assumed that the environment reacts causally toany perturbation.
This resulted in the retarded equation of motion in (104). If, instead, we considered
the kernelK−

2 (t) := K−

2 (0, t), [see (87)], then the advanced equation of motion in
(92) would have resulted instead of (104). So, we see that it is not necessary, for the
nonconservative harmonic oscillator, to construct an action in order to derive the
equations of motion. How far this idea can be advanced to moregeneral systems
is an open question.

7 Discussion

Let us look at the retarded equation in (91) a little. This is aconvolution between
the coordinateq(t) and the distributionK+

2 (t, 0) := K+
2 (t). An insightful way of

viewing this is to think ofK+
2 (t) as the environment’s response “function”, where,

for an arbitraryf(t),

y(t) = K+
2 (t) ∗ f(t) (105)

Then, the actual paths that a system can follow will be thosef(t) such thaty(t) ≡ 0
in (105). That is, the path a system follows will be those suchthat the environment’s
response to it vanishes. This treatment of fractional derivatives as signal processors
is well known [14] and can be extended to more general Volterra series than that
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in (91) [4, 9]. Similar comments hold for (92) and its generalizations, but, in this
case, the environment’s response is anti-causal. We have not pursued this line of
research here. However, it does open up the possibility of examining mechanics
from a systems theoretic viewpoint [see, e.g., [8] for an introduction to systems
theory].

We have not considered the most general action here. Instead, our attention
was restricted to including fractional derivatives in an equation of motion derived
by using a variational principle. In this respect we have succeeded. Further
research is needed to see how far our formalism can be developed and, how useful
it will be in situations other than those considered here. Inparticular, it would be
interesting to extend the formalism in Section 6 to more general situations.
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